The generator matrix

 1  0  0  0  0  1  1  1  X  1  1  0  1  X  0  1  1  1  X  1  0  1  1  1  1  1  X  X  X  1  X  1  0  0  1  X  1  0  1  X  X  0  0  1  1  1  1  0  X  1  0  X  1  X  1  0  X  0  1  0  1  0  0  X  1  X  1  0  1  0  0  1  1  0  1  X  1  1  0  1
 0  1  0  0  0  X  X  X  0 X+1  1  1 X+1  1  1 X+1 X+1  0  1  X  X  X  1 X+1  0 X+1  1  1  1  0  0 X+1  X  1  X  X  1  1  X  1  X  0  1  0  1  0 X+1  0  X  X  X  0  0  0  0  1  1  1  0  0  1  1  0  0  1  1  X  1  X  1  1  1  1  X  1  1  0  0  X  1
 0  0  1  0  0  0  0  0  0  0  0  X  X  X  0  X X+1  1  1  1  1 X+1 X+1 X+1  1  1 X+1 X+1  1  X  X X+1  1  0  X  0  1  1  1  1  1  1  X X+1 X+1  X  0  1  0 X+1  1  0  0  X  X  X  1  0  1  1  1 X+1  1  1  X X+1 X+1  0  1  1  1  1  1  1  X  X  1 X+1  1  X
 0  0  0  1  0  0 X+1  1  1  0  X  0  1 X+1 X+1 X+1 X+1  1  X  X X+1 X+1  0  1  X  X X+1  1  0  0  X  0  0  X  0  1  1  X X+1 X+1  0  X X+1  0  1  1  X X+1  1  X  1  0 X+1  1  X  1  1  0 X+1  0  0 X+1 X+1  1  X  X  X  0  0  X  1  0 X+1 X+1  1  1  X X+1  0 X+1
 0  0  0  0  1  1 X+1  0  1  X X+1 X+1  X  1  X X+1  1 X+1  X X+1  1  X X+1  0  X  0  0  1 X+1  1  1 X+1  0  1  X X+1  1  X  0  0  0  1  1  0  0 X+1  1 X+1  X  1  X  1  0  0  X X+1  0  X  1  X  0  X  0  1  X  1  0  1  1 X+1  0  X  1  X  1 X+1  0  0  1 X+1

generates a code of length 80 over Z2[X]/(X^2) who�s minimum homogenous weight is 73.

Homogenous weight enumerator: w(x)=1x^0+50x^73+101x^74+96x^75+58x^76+88x^77+127x^78+78x^79+26x^80+64x^81+81x^82+38x^83+27x^84+22x^85+35x^86+18x^87+7x^88+10x^89+24x^90+18x^91+3x^92+12x^93+10x^94+8x^95+2x^96+4x^97+6x^98+4x^100+6x^101

The gray image is a linear code over GF(2) with n=160, k=10 and d=73.
This code was found by Heurico 1.16 in 0.298 seconds.